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Properties of target species can be estimated by various means including interpolations
in periodic charts. Interpolation is equivalent to numerical solution of the Laplace equa-
tion. A test of this equivalence, within some confidence level, for anyN-atomic molecule
surrounded by 4N nearest neighbors: the sum of the second differences of the data in all di-
rections must be zero. Since very few molecules have 4N neighbors with known data, the
test becomes: the sum of the averages of the second differences must be zero. The validity
of these tests is explored. For radii of main-group atoms, and for internuclear separations of
their diatomic combinations, the averages are different from zero and the sums of the averages
are zero to within oneσ if second-nearest neighbors are used. Dissociation potentials pass the
tests but with larger scatter. Predictions for dissociation potentials, using iterative interpolation
within boundaries on which there are known data, are reviewed.

KEY WORDS: Laplace equation, internuclear distance, dissociation potential, periodic sys-
tems, diatomic molecules

1. Introduction

1.1. The need for data and methods to obtain them

It is difficult to overstate the need which exists for data relative to various mole-
cular properties. The standard methods for obtaining this information are experiment
and ab initio quantum computation. Both of these methods are expensive and time-
consuming to the extent that procedures for the approximate forecasting of data have
become very important. One such procedure is to classify molecular species using topo-
logical indices describing molecular structures (mathematical chemistry) and to relate
these indices to properties of the molecules (QSPR, quantitative structure–properties re-
lationships). Related to these are the constructions of immense property data bases and
the use of combinatorial chemistries.

Another procedure is to search for trends among tabulated data for species along
one or more axes of an appropriate periodic system of molecules [1–5], e.g., for trends
among isovalent molecules. Then, having found a trend by graphical study [6], least
squares fitting [7], or the training of neural networks [8], there can follow the predic-
tion of data for the target molecule(s); typically, this method is used for molecules with
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few atoms. After many failed smoothings of dissociation energies of selected diatomic
molecules at this laboratory, a last-resource step was to solve Laplace’s partial differ-
ential equation for the periodic-system locations where the target molecules lie, using
given data on the boundary surrounding them. The results were surprisingly good. This
surprise led to the present study concerning whatever a theoretical basis might exist for
using Laplace’s equation in the prediction of molecular data, and, if so, what errors will
accrue.

This investigation of Laplace’s equation as a global predictive tool is foreign to
the worldview of quantum chemistry, and indeed, it will no longer be relevant when
Schrödinger’s equation has been applied to all species. The same is true of all methods
for mining molecular data.

1.2. Theoretical aspects presented in this paper

This paper begins with a definition of the periodic systems for the elements and
for molecules. Then it refers to use of the triad principle in periodic systems, and to
the proof that for one species averaging over row(s) and column(s) is equivalent to a
local solution of the discretized Laplace equation. This equation states that the sum
of the second differences of the data, over all periodic system directions, will be zero.
The paper goes on to describe a test that can be used for molecular properties, the data
for which are so sparse that there may be no molecule for which the sum of the second
differences can be found. This proposed test consists of averaging the second differences
of the data separately along each axis, and determining if the sum is zero. The validity
of this test is investigated, and the possibilities that data for both atoms and molecules
can satisfy Laplace equation, for one or more properties, are explored.

1.3. Possible uses of the investigation

The practical application of the concept can be illustrated with a hypothetical ex-
ample, illustrated in figure 1. Suppose that data for some property of BeP, MgP, and

Figure 1. The four axes of the periodic system of diatomic molecules, showing the molecules discussed
in the text. Moving from NaP (lower right) to AlP (upper left) involves changing the group number for
the first atom from Na to Al. The axes are represented with abandonment of orthogonality, so progression
along theR1 andR2 axes is restricted to the lines through MgP. The data for some property of all but one
species are assumed known, and it is desired to estimate the datum for MgS. It is assumed that the data for
this property have been shown on average to follow Laplace’s equation. So, if the second differences for
the data are positive along the row axes, and if the second difference is negative along theC1 axis, then it
follows that the second difference is also negative along theC2 axis. This information allows an improved

estimate of the datum for MgS from the known data for MgSi and MgP.
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CaP; and MgN (MgP again), and MgAs; and NaP (MgP again) and AlP are known. It is
then possible to determine the second differences of the data with respect to theperiod
number of the first atoms (in group 2 of the periodic chart) and the second atoms (in
group 5) of the molecules, and with respect to thegroup number of the first atoms (in
period 3), respectively. Assuming that the sums of the second differences have passed
the test of being (on average) zero, then the second difference of the data with respect
to the group number of the second atoms (from period 3) will be known. Finally, if
the datum is known for MgSi, then the hypothetically unknown value for MgS can be
estimated from the second difference of the triad MgSi, MgP, and MgS. This estimate
should be more accurate than that from a simple triad extrapolation from MgSi and MgP
toward MgS.

A variant of this payoff concerns the prediction of data for vast numbers of species
simultaneously. If there are known values for a property on some complete boundary of
the periodic system, then it must be possible simultaneously (i.e., iteratively) to do triad
averages, using all axes of the periodic system, for all the molecules inside the boundary.
Some predictions already made will illustrate the levels of accuracy (unexpectedly good)
and precision (large) to be expected; these are presented in section 4.

1.4. Definitions

This paper concerns main-group elements, and neutral ground-state molecules
formed from atoms of those elements, all in the gas phase. The periods of the elements
are 2–6; the groups are 1–7 (though the IUPAC notation 1, 2, and 13–17 are used in the
tables). The term “descriptor” refers to atomic charge, electron counts, formula indices
such asn in CnH2n+2, etc. The term “property” refers to such observables as internuclear
separation.

2. Theory

2.1. Periodic systems of atoms and molecules

The common charts of the elements are embedded in a chemical space with a period
(row) axisR and a group (column) axisC. The most general periodic system of diatomic
molecules exists in a chemical space with coordinatesR1, C1, R2 andC2 [3,4]. It is a
four-dimensional matrix whose elements are molecular symbols, just as the chart of the
elements can be represented as a two-dimensional matrix whose elements are atomic
symbols. This general system is the outer direct product, of the chart of the elements,
with itself. It is a “physical” periodic system, which means that all possible molecules
with a given number of atoms are or can be included. Species symbols are multiplicative;
thus, the molecular symbol NaCl can be considered formally as the product of the atomic
symbols Na and Cl.

Some descriptors are additive in going from atoms to molecules, e.g., atomic num-
bers. Some properties are approximately additive: e.g., covalent radiirc and internuclear
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separationsre [9]. For example, therc of F and Br are 0.709 Å and 1.142 Å [9] andre for
BrF is 1.76 Å [10]. Some important cross-sections are likewise additive [11]. If data for
these properties are introduced as antilogarithms in the compartments of the chart of the
elements, then the diatomic-molecular data will be exponents in the compartments of
the periodic system of those molecules.

2.2. The triad principle and the chart of the elements

The triad principle states that the value of some property of an element can be
estimated by averaging the values of the species to the left and right in their chart, or the
species above and below, or for present purposes both. Mendeleev used the principle to
predict properties of Ga, Ge, and Sc (though it appears that his published values were
the result of great chemical intuition as much as of arithmetic) [12].

The triad principle continues to attract interest. Zagoryuiko and Zagoryuiko [13]
used a global iterative process that included diagonal nearest neighbors in the averages.
Given some atomic properties (with which atomic numbers were associated), and leaving
blank eight compartments in the chart of the elements (with elements up to number 54),
their computer program correctly placed all of the missing atomic numbers [13]. Gorban,
Miirkos, and Svitin identified members of periodic-chart groups by plotting properties
on atomic number and locating sets of points that can be connected (to within small
error) by straight lines [14]. Foyas reproduced most of the periodic chart by subjecting
atomic data to self-associative neural-network analysis [15].

2.3. The triad principle, the chart of the elements, and Laplace’s equation

An astonishing link exists between the triad principle and one of the most important
equations in physics, Laplace’s equation, used in such diverse fields as electrodynamics,
steady-state temperature distributions, and laminar-flow hydrodynamics:

∂2P

∂R2
+ ∂

2P

∂C2
= 0, (1)

whereP is any property and whereR andC are the period and group coordinates of the
atomic chart. The link is actually to thediscretizedform of the equation,


2P


R2
+ 


2P


C2
= 0, (2)

where
R and
C are unity for neighboring atoms [16]. Both directions must be used
to avoid a trivial result. It follows [16] that if the values of some atomic property at the
borders of the chart are known, it must be possible to calculate, by two-dimensional iter-
ative averaging, all the values inside the boundary. The boundaries of the most common
element charts are orthogonal, so Cartesian coordinates are to be used.

Graphs ofrc and of atomic radiusrψ (the radius corresponding to the maximum
charge density in the outermost orbital, as computed by the Dirac–Breit–Pauli–Hartree–
Fock method [17]) globally have positive curvatures along rows and negative curvatures
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going down columns. Such graphs lendqualitativesupport to equations (1) or (2) for
atomic radii.

The applicability of Laplace’s equation can be testedquantitatively. At the position
of any atom, the sum of the second differences of the data in both the row and the column
directions of the periodic charts should be zero.

2.4. The triad principle and Laplace’s equation in molecular periodic systems

The manner in which physical periodic systems of molecules are created (sec-
tion 2.1) guarantees that if atomic descriptors in their chart obey the triad principle, than
the same molecular descriptors in their periodic systems will obey it also. For exam-
ple, consider the species discussed in section 1.2. The triads NaP, MgP, and AlP; MgSi,
MgP, and MgS; and BeP, MgP, and CaP are such that the nuclear charge and the total
(or valence) electron count of the center molecule can be obtained from the triad prin-
ciple. This is due to the fact that these descriptors vary linearly, and hence, have zero
second differences along the rows and columns; therefore, they satisfy the discretized
Laplace equation. The triad MgN, MgP, and MgAs does not behave similarly because of
a phenomenon to be discussed in section 2.5. The example applies to molecular weights
(subject to isotopic effects); it will be seen below if it applies also to properties such
asre.

Consider Dias’s periodic charts for various polycyclic aromatic hydrocarbons
(PAH) [18]. They are “chemical” periodic systems, which means that they include
members of a restricted class of molecules (in this case, PAH) without limiting their
atom counts. Numerous species descriptors obey the triad principle in these charts. For
example, the C20H12 lies between C16H10 and C24H14 in a row, and between C14H10

and C26H14 in a column, of Dias’s table PAH6. The triad principle also works for to-
tal electron count and (ignoring isotopic and isomeric effects) molecular weight. These
properties vary linearly, have zero second differences along the rows and in the columns,
and hence, satisfy the discretized Laplace equation. (Structural properties of PAH such
as numbers of isomers, and physical properties such as boiling points (averaged over
isomers), do not behave in similar manner.)

Returning to physical periodic systems of diatomic molecules, graphs ofre are
globally smooth (except near alkali-earth pairs) and have one curvature when plotted on
C1 andC2 (figure 2) and the opposite curvature when plotted onR1 andR2 (figure 3)
[6]. Thus, since curvatures are related to second differences, the data have second differ-
ences of opposite sign along these axes. Themagnitudesof the second differences are
investigated in section 3.3. The plots for other spectroscopic properties (e.g., IP [6]) are
less smooth but, on the whole, the curvatures still appear opposite for the two different
sets of axes.

The applicability of Laplace’s equation to such spectroscopic data must, of course,
be tested quantitatively. At the position of any molecule, the sum of the second differ-
ences of the data in both the row and the column directions of the periodic charts should
be zero. There will certainly be few, if any, sets of molecules such that data for any
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Figure 2. Plot of tabulatedre of diatomic molecules formed from(R1, R2) = (2, 2) atoms. Molecular
symbols are formed by using the atomic symbols on the axes; for example, the leftmost datum is B2, and
the very high data are NeLi and LiNe. The valley of minimum values is along thene = 10 sequence BF,
CO, N2, OC, and FB (•). The scarcity of data for molecules with fewer than 10 electrons is clearly evident.
The curvatures, and hence, the second differences, of the data are positive along both axes. For molecules
with other (R1, R2), the plots are very similar, which is the hallmark of diatomic-molecular periodicity.
Between two plots with adjacentR1 or R2 lie molecules with inert-gas atoms; these molecules have very
high values ofre such as those shown for NeLi and LiNe. The regions of these high values are excluded in

the testing and use of Laplace’s equation presented in this paper. Reproduced by permission from [5].

Figure 3. Plot of tabulatedre formed from group 3 and group 7 atoms. The second differences are negative
along both axes, the opposite of the situation in figure 2. Secondary periodicity is clearly visible. Clearly,
the edges of such plots are excluded in the testing and use of Laplace’s equation. Reproduced by permission

from [5].
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given spectroscopic property is known for all eight neighbors (figure 1). Thus, it will
be necessary to calculate second differences for all existing triads along each direction,
average them, and verify that these averages sum to zero.

2.5. Are averaged second-difference sums valid?

It is necessary to inquire about the validity of these proposed averaged second
differences. The inquiry must, of course, be empirical, and will consist of comparing
them against averages over limited numbers of species. Local failures of smoothness
will certainly result in large scatter.

The determination of second differences is complicated by the presence of “sec-
ondary periodicity”, the phenomenon that atomic numbers and weights, and sometimes
properties, increase more abruptly in moving from odd-numbered to even-numbered pe-
riods in the last six columns of the chart of the elements, and from even-numbered (be-
ginning with 4) to odd-numbered periods in the first two columns. This increase is due to
the first emergences ofd andf elements [19,20]. The existence of secondary periodic-
ity suggests the determination of second-nearest-neighbor, rather than nearest-neighbor,
second differences in the row direction.

2.6. Can atoms and molecules satisfy Laplace’s equation simultaneously?

Rationale has been presented that equation (2) holds for atomic and molecular
descriptors such as electron counts, and that it may well hold forre and its atomic equiv-
alent, radius. Is it necessarily true that if equation (2) is satisfied by an atomic descriptor
or property, then it will also be satisfied by the molecular equivalent?

Consider additive descriptors as a first case, with a numerical example. The atomic
numbers and electron populations of Li through Ne are 3 through 10, respectively; the
total nuclear charges and the electron populations of LiLi through LiNe and of GaLi
through GaNe are 6 through 13 and 34 through 41, respectively. In both cases, the
variation inC2 is linear and any second differences are zero.

More generally, suppose that a propertyP , with data as exponents in the cells of
rowR of the chart of the atoms, has a linear variation with respect toC:

P = (aC + b)f (R), (3)

wherea andb are constants. IfP is additive (asre is, ideally, additive from radii), then
its data as exponents in the cells of the periodic system of diatomic molecules will also
vary linearly with respect toC1 andC2 except for an additive constant. For example, the
dependence with respect toC2, holdingR1, R2 andC1 constant, is

P = (aC1+ b)f (R1)+ (aC2+ b)f (R2) = const1+ const2× (aC2+ b). (4)

The same argument holds if the variation in the atomic property is not linear. For
example, suppose that some property of Li through Ne has valuesf (R)g(C); then the
property for LiBe through LiNe has valuesf (R1)g(C1) + f (R2)g(C2). For molecules
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Table 1
Tabulated atomic covalent radiirc in Å.

Row Column of periodic chart

1 2 3 4 5 6 7

2 1.519 1.113 0.795 0.772 0.726 0.74 0.709
3 1.858 1.599 1.432 1.176 1.1 1.03 0.994
4 2.272 1.974 1.221 1.225 1.25 1.161 1.142
5 2.48 2.152 1.626 1.405 1.45 1.432 1.333
6 2.655 2.174 1.704 1.75 1.55 1.67

with variousC1, the data will vary withC2 just as for atoms but with an additive constant.
The second differences in each case will be the same.

2.7. Can several properties satisfy Laplace’s equation simultaneously?

Suppose that, for some property, the average second-nearest-neighbor second dif-
ferences of the data in the row direction(s) are equal and opposite to the average second
differences in the column direction(s). The question then arises, will another property,
such as vibration frequencyωe, with its Walsh’s-rule correlation tore, also satisfy equa-
tion (2)?

It is simple to prove by exception that a function of a solution to Laplace equation
will not necessarily satisfy Laplace’s equation. Consider the expressionR+C, clearly a
solution of equation (2). Then consider the function exp(R + C); this function doesnot
satisfy equation (2). On the other hand, linear functions of the same expression, such as
α(R + C)+ β (α andβ constant),cansatisfy equation (2).

3. Testing the data as being solutions to the Laplace equation

3.1. Atomic radii

Covalent radiirc exist for most main-group elements (table 1) [9], and hence,
species with known data surround almost all the elements with 2< R < 6 and
1 < C < 8. Tables 2 and 3 show the second differences along theR andC direc-
tions. The averages of these second differences, over all elements, have very similar
magnitudes and opposite signs (granted that to the confidence of one standard deviation,
neither average is statistically significant from zero). The conclusion is thatrc obeys
the Laplace equation globally (i.e., with averaging), though with large scatter. TheR

comparison in table 3 shows the secondary-periodicity effect.
A computed radius,rψ , exists; it corresponds to the location of maximum charge

density of the outermost orbital [17]. Table 4 shows that the two averages of the nearest-
neighbor second differences over all elements forrψ have very similar magnitudes and
opposite signs (granted that neither average is statistically significant). If second-nearest-
neighbors are used, the same is true but now the random errors are less than the magni-
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Table 2
Second differences,rc in Å, along columns.

Row Column of periodic chart

1 2 3 4 5 6 7

2 0.088 0.295 −0.023 0.06 −0.045
3 0.092 −0.089 0.18 0.006 0.034
4 −0.455 0.757 0.021 −0.114 0.07
5 −0.198 0.305 0.266 −0.063 −0.081
6 0.011 0.516 −0.246 0.32

Average 0.0711
Standard deviation 0.2529

Table 3
Second differences,rc in Å, down rows.

Row Column of periodic chart

1 2 3 4 5 6 7

3 0.075 −0.111 −0.848 −0.355 −0.224 −0.159 −0.137
4 −0.206 −0.197 0.616 0.131 0.05 0.14 0.043
5 −0.033 −0.156 −0.327 0.165 −0.1 −0.033

R = 3 R = 4 R = 5 All rows

Average (2< C < 8) −0.3446 0.196 −0.0737 −0.074
Standard deviation 0.2939 0.239 0.2029 0.3315

Table 4
Averages of second differences of relativistic Hartree–Fock atomic radii for main-

group elements.

Along rows Along columns

rψ in Å σ rψ in Å σ

Nearest neighbors 0.073 0.143 −0.079 0.244
Second-nearest neighbors 0.068 0.066 −0.054 0.022

tudes of the averages. The conclusion is thatrψ obeys the Laplace equation globally, if
second differences are used.

3.2. Diatomic-molecular internuclear separations

There data for molecules with atoms from periods groups 1–7 are taken from [10].
There is not one diatomic molecule for which the nearest-neighbor second differences
in the data are known for four directions of their chemical space, so it is necessary to
compute the averages of the second differences over all the molecules.

Tables 5 and 6 show the molecules for which nearest-neighbor and next-nearest
second differences are available. One aspect of these tables is surprising; one might
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Table 5
Nearest-neighbor second differences of main-group diatomic-molecular internuclear

separations,re in Å, sorted alphabetically.

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

AlBr 3 4 13 17 0.078 −0.349
AlCl 3 3 13 17 −0.311 −0.344 −0.003
AlF 3 2 13 17 −0.272 0.042
AlO 3 2 13 16 0.205 0.023
AlS 3 3 13 16 0.014
AsO 4 2 15 16 0.054 0.107 0.025
AsP 4 3 15 15 −0.277 0.100
AsS 4 3 15 16 0.013
BCl 2 3 13 17 −0.280
BeCl 2 3 2 17 0.141
BO 2 2 13 16 0.137
Br2 4 4 17 17 0.043 0.043
BrAl 4 3 17 13 −0.349 0.078
BrCl 4 3 17 17 −0.232 0.036
BrCs 4 6 17 1 0.077
BrF 4 2 17 17 0.020
BrGa 4 4 17 13 0.133 0.071
BrI 4 5 17 17 0.049
BrIn 4 5 17 13 0.069 −0.116
BrNa 4 3 17 1 −0.013 0.068
BrTl 4 6 17 13 0.062
BS 2 3 13 16 0.058
CaF 4 2 2 17 −0.109 0.012
CaO 4 2 2 16 0.025
CF 2 2 14 17 0.039
Cl2 3 3 17 17 −0.210 −0.210
ClAl 3 3 17 13 −0.344 −0.311 −0.003
ClB 3 2 17 13 −0.280
ClBe 3 2 17 2 0.141
ClBr 3 4 17 17 0.036 −0.232
ClCs 3 6 17 1 −0.395
ClF 3 2 17 17 −0.086 −0.086
ClGa 3 4 17 13 0.128 −0.277
ClI 3 5 17 17 −0.263
ClIn 3 5 13 17 −0.274 −0.116
ClLi 3 2 17 1 −0.307
ClMg 3 3 17 2 0.093
ClN 3 2 17 15 −0.131
ClRb 3 5 17 1 −0.001
ClTl 3 6 17 13 −0.116 −0.267
CN 2 2 14 15 0.027 0.035
CO 2 2 14 16 0.187 0.099
CS 2 3 14 16 −0.265 0.033
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Table 5
(Continued.)

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

CsBr 6 4 1 17 0.077
CsCl 6 3 1 17 −0.395
FAl 2 3 17 13 −0.272 0.042
FBr 2 4 17 17 0.020
FC 2 2 17 14 0.039
FCa 2 4 17 2 −0.109 0.012
FCl 2 3 17 17 −0.086 −0.086
FGa 2 4 17 13 0.091 0.163
FGe 2 4 17 14 0.055 0.020
FIn 2 5 17 13 −0.112 0.049
FMg 2 3 17 2 0.080
FRb 2 5 17 1 −0.024
FSi 2 3 17 14 −0.185 0.024
FSn 2 5 17 14 −0.085
FSr 2 5 17 2 0.105
GaBr 4 4 13 17 0.071 0.133
GaCl 4 3 13 17 −0.277 0.128
GaF 4 2 13 17 0.091 0.163
GaI 4 5 13 17 0.141
GeF 4 2 14 17 0.055 0.020
GeO 4 2 14 16 0.093
GeS 4 3 14 16 −0.265 0.114
GeSe 4 4 14 16 0.083 0.115
IBr 5 4 17 17 0.049
ICl 5 3 17 17 −0.263
IGa 5 4 17 13 0.141
IIn 5 5 17 13 −0.119
IK 5 4 17 1 −0.207
INa 5 3 17 1 0.017
InBr 5 4 13 17 −0.116 0.069
InCl 5 3 17 13 −0.116 −0.274
InF 5 2 13 17 −0.112 0.049
InI 5 5 13 17 −0.119
KI 4 5 1 17 −0.207
LiCl 2 3 1 17 −0.307
MgCl 3 3 2 17 0.093
MgF 3 2 2 17 0.080
N2 2 2 15 15 0.127 0.127
NaBr 3 4 1 17 0.068 −0.013
NaI 3 5 1 17 0.017
NC 2 2 15 14 0.035 0.027
NCl 2 3 15 17 −0.131
NO 2 2 15 16 0.113 0.034
NP 2 3 15 15 −0.266 0.083 0.056
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Table 5
(Continued.)

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

NS 2 3 15 16 −0.185 0.028
NSe 2 4 15 16 0.095 0.021
NSi 2 3 15 14 0.135
OAl 2 3 16 13 0.023 0.205
OAs 2 4 16 15 0.054 0.025 0.107
OB 2 2 16 13 0.137
OC 2 2 16 14 0.099 0.187
OCa 2 4 16 2 0.025
OGe 2 4 16 14 0.093
ON 2 2 16 15 0.034 0.113
OP 2 3 16 15 −0.177 0.083
OS 2 3 16 16 −0.107 0.083 0.132
OSb 2 5 16 15 0.008
OSe 2 4 16 16 0.010
OSi 2 3 16 14 −0.267 0.074
OSn 2 5 16 14 −0.119
OSr 2 5 16 2 −0.078
OTe 2 5 16 16 0.043
P2 3 3 15 15 −0.297 −0.297
PAs 3 4 15 15 0.100 −0.277
PbS 6 3 14 16 −0.250
PbSe 6 4 14 16 0.078
PN 3 2 15 15 −0.266 0.056 0.083
PO 3 2 15 16 −0.177 0.083
RbCl 5 3 1 17 −0.001
RbF 5 2 1 17 −0.024
S2 3 3 16 16 −0.261 −0.261
SAl 3 3 16 13 0.014
SAs 3 4 16 15 0.013
SB 3 2 16 13 0.058
SbO 5 2 15 16 0.008
SC 3 2 16 14 −0.265 0.033
SeGe 4 4 16 14 0.115 0.083
SeN 4 2 16 15 0.021 0.095
SeO 4 2 16 16 0.010
SePb 4 6 16 14 0.078
SeS 4 3 16 16 −0.258 0.047
SeSi 4 3 16 14 −0.306
SeSn 4 5 16 14 0.081 −0.114
SGe 3 4 16 14 0.114 −0.265
SiF 3 2 14 17 −0.185 0.024
SiN 3 2 14 15 0.135
SiO 3 2 14 16 −0.267 0.074
SiS 3 3 14 16 −0.291 −0.312
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Table 5
(Continued.)

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

SiSe 3 4 14 16 −0.306
SN 3 2 16 15 −0.185 0.028
SnF 5 2 14 17 −0.085
SnO 5 2 14 16 −0.119
SnS 5 3 14 16 −0.260 −0.119
SnSe 5 4 14 16 −0.114 0.081
SnTe 5 5 14 16 −0.110
SO 3 2 16 16 −0.107 0.132 0.083
SPb 3 6 16 14 −0.250
SrF 5 2 2 17 0.105
SrO 5 2 2 16 −0.078
SrS 5 3 2 16 −0.056
SSe 3 4 16 16 0.047 −0.258
SSi 3 3 16 14 −0.312 −0.291
SSn 3 5 16 14 −0.119 −0.260
SSr 3 5 16 2 −0.056
TeO 5 2 16 16 0.043
TeSn 5 5 16 14 −0.110
TlBr 6 4 13 17 0.062
TlCl 6 3 13 17 −0.267 −0.116

Count 79 79 38 38
Average −0.100 −0.100 0.072 0.072
σ 0.154 0.154 0.054 0.054

think that the second differences for a given molecule should be the same in the two
row or column directions (and they are so for homonuclear species). But heteronuclear
molecules appear twice, with the entries reversed. Some entries that one would expect
to see are missing because second differences cannot be found if the molecule is at the
end of a row or column (table 5) or at the end and in the compartment once removed
from the end (table 6).

The average nearest-neighbor second differences (table 5) have comparable magni-
tudes and opposite signs in the row and column directions (cf. the end of the table). The
averages in the column directions are statistically significant, but those in the row direc-
tions have such large scatter that it is impossible to say that they differ from zero. Despite
the scatter, it is not excluded that the magnitudes are equal, and hence, that Laplace’s
equation is, on average, being obeyed. To see if this scatter is due to secondary periodic-
ity, next-nearest-neighbor second differences were found (table 6). Now the results are
all statistically significant to a confidence ofσ , granted that there are fewer data. The
magnitudes are equal and opposite, and hence, Laplace’s equation is, on average and to
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Table 6
Second-nearest-neighbor second differences of main-group diatomic-molecularre

in Å, sorted alphabetically by molecules.

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

AlF 3 3 13 17 0.052
BrGa 4 4 17 13 −0.101
BrTl 4 6 17 13 0.111
ClGa 3 4 17 13 −0.102
FAl 3 3 17 13 0.052
FGa 2 4 17 13 −0.099 0.090
FGe 2 4 17 14 −0.081
FSi 3 3 17 14 0.037
GaBr 4 4 13 17 −0.101
GaCl 4 3 13 17 −0.102
GaF 4 2 13 17 −0.099 0.090
GeF 4 2 14 17 −0.081
GeO 4 2 14 16 −0.095 0.055
GeS 4 3 14 16 −0.101 0.082
GeSe 4 4 14 16 −0.100
OGe 2 4 16 14 −0.095 0.055
OP 2 3 16 15 0.059
OSi 2 3 16 14 0.053
OSn 3 5 16 14 0.020
PO 3 2 15 16 0.059
SeGe 4 4 16 14 −0.100
SGe 3 4 16 14 −0.101 0.082
SiF 3 3 14 17 0.037
SiO 3 2 14 16 0.053
SnO 5 3 14 16 0.020
TlBr 6 4 13 17 0.111
TlI 6 5 13 17 0.122

Count 7 7 10 10
Average −0.097 −0.097 0.068 0.068
σ 0.008 0.008 0.032 0.032

within the confidence chosen, being obeyed. The scatter cannot be attributed to a slow
systematic variation with respect toC1 andC2 (figure 4).

3.3. Diatomic-molecular dissociation energies

The data for dissociation potential (D◦◦ in eV) were taken from [10]. Only one
molecule, Si2, has the eight neighbors with data needed for the determination of nearest-
neighbor second differences along all four directionsR1,R2,C1, andC2. The differences
along the four directions are 1.3, 1.3,−0.35, and−0.35 eV, respectively. The discrep-
ancies of 0.95 eV do not preclude the possibility that Laplace’s equation is satisfied, be-
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Figure 4. Nearest-neighbor second differences forre in Å, plotted on(C1, C2) with the numbers indicating
the quantity of data, heteronuclear molecules contributing two data each. The error bars designate oneσ .

No systematic trend is seen.

cause the errors in the data for this property are often as large as 0.16 eV, and because six
of them are involved in the error propagation for the difference of two second differences.

A scatter plot ofD◦◦ againstre suggests a linear relationship, so according to sec-
tion 2.7 it is possible that this property also satisfies the Laplace equation, though with
much largerσ . Tables 7 and 8 show the second differences. The averaged next-nearest-
neighbor data second differences are not different from zero to within the stated confi-
dence; but the magnitudes are equal and opposite, and hence, Laplace’s equation pos-
sibly, on average, being obeyed. The same appears true for nearest-neighbor second
differences, but with less scatter.

4. Mining molecular data with Laplace’s equation

4.1. Internuclear separations

The foregoing makes it possible to forecastre for individual molecules using the
method described in section 1.3. Unfortunately, tabulated data are scarce and the likeli-
hood of having enough neighbors for a target molecule is very small. But fact that the
average second differences in both row directions, and in both column directions, are the
same indicates that the method should be revisited. Suppose thatre for NaP, MgP, and
AlP are known, and hence, that the second differences with respect to the group number
of their first atoms is known. Then the second difference ofre with respect to the group
number of the second atoms will be the same. So, ifre is known for MgSi, then the
hypothetically unknown value for MgS can be estimated from the second difference of
the triad MgSi, MgP, and MgS. Thus, it is quite possible thatre can be found for some
target molecule.

The likelihood of makingglobal forecasts forre remains low because having mole-
cules with known data completely surrounding an ensemble of target molecules is most
improbable.
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Table 7
Nearest-neighbor second differences of main-group diatomic dissociation poten-

tials in eV, sorted alphabetically by molecules.

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

AlBr 3 4 13 17 −0.07 0.03
AlCl 3 3 13 17 0.18 1.08
AlF 3 2 13 17 0.01 −3.46
AlO 3 2 13 16 1.65
AlP 3 3 13 15 1.54 1.78
AlS 3 3 13 16 0.99 −0.36
AlSe 3 4 13 16 −0.23
AlSi 3 3 13 14 −0.93
BaBr 6 4 2 17 1.39 0.01
BaCl 6 3 2 17 0.74 −0.7
BaF 6 2 2 17 −2.38
BaI 6 5 2 17 −2.52
BCl 2 3 13 17 1.3
BeO 2 2 2 16 2.57
BiS 6 3 15 16 −0.07
BiSe 6 4 15 16 −0.03
BO 2 2 13 16 −0.87
BP 2 3 13 15 1.84
BrAl 4 3 17 13 0.03 −0.07
BrBa 4 6 17 2 1.39 0.01
Br2 4 4 17 17 0.11 0.11
BrCa 4 4 17 2 1.65
BrCl 4 3 17 17 0.17 0.06
BrCs 4 6 17 1 −0.2
BrF 4 2 17 17 0.39
BrGa 4 4 17 13 −0.21 −0.18
BrI 4 5 17 17 0.05
BrIn 4 5 17 13 −0.11 −0.26
BrK 4 4 17 1 −0.17 −0.18
BrLi 4 2 17 1 −0.28
BrNa 4 3 17 1 −0.25 0.76
BrO 4 2 17 16 −0.25 0.65
BrRb 4 5 17 1 −0.2 0.28
BrSr 4 5 17 2 0.25 1.07
BrTl 4 6 17 13 −0.26 −0.5
BS 2 3 13 16 1.01 −2.96 −0.86
CaBr 4 4 2 17 1.65
CaCl 4 3 2 17 −0.73 0.58 1.08
CaF 4 2 2 17 −0.63 0.09
C2 2 2 14 14 −0.06 −0.06
CF 2 2 14 17 −0.03
ClAl 3 3 17 13 1.08 0.18
ClB 3 2 17 13 1.3
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Table 7
(Continued.)

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

ClBa 3 6 17 2 0.74 −0.7
ClBr 3 4 17 17 0.06 0.17
ClCa 3 4 17 2 0.58 −0.73 1.08
Cl2 3 3 17 17 −0.11 −0.11
ClCs 3 6 17 1 0.16
ClF 3 2 17 17 −1.09
ClGa 3 4 17 13 0.44 −0.28
ClI 3 5 17 17 0.39
ClIn 3 5 17 13 0.36 −0.14
ClK 3 4 17 1 0.3 −0.15
ClLi 3 2 17 1 0.56
ClMg 3 3 17 2 2.77
ClNa 3 3 17 1 −1.97 0.72
ClO 3 2 17 16 −0.87
ClRb 3 5 17 1 0.3 0.32
ClSr 3 5 17 2 0.67 0.32 0.42
ClTl 3 6 17 13 0.35
CN 2 2 14 15 1.78
CO 2 2 14 16 −8.75 −7.4
CP 2 3 14 15 1.44 −0.64
CS 2 3 14 16 2.35 −3.91
CsBr 6 4 1 17 −0.2
CsCl 6 3 1 17 0.16
CSi 2 3 14 14 1.66
FAl 2 3 17 13 0.01 −3.46
FBa 2 6 17 2 −2.38
FBr 2 4 17 17 0.39
FC 2 2 17 14 −0.03
FCa 2 4 17 2 −0.63 0.09
FCl 2 3 17 17 −1.09
FGa 2 4 17 13 0.18 −1.48
FGe 2 4 17 14 0.47 0.18
FIn 2 5 17 13 0.05 −0.02
FN 2 2 17 15 0.9
FO 2 2 17 16 0.64
FRb 2 5 17 1 0.22
FSi 2 3 17 14 −0.47
FSn 2 5 17 14 −1.2
FSr 2 5 17 2 0.37 −0.91
FTl 2 6 17 13 0.51
GaBr 4 4 13 17 −0.18 −0.21
GaCl 4 3 13 17 −0.28 0.44
GaF 4 2 13 17 0.18 −1.48
GaI 4 5 13 17 0.26
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Table 7
(Continued.)

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

GaTe 4 5 13 16 −0.54
GeF 4 2 14 17 0.47 0.18
GeO 4 2 14 16 0.19
GeS 4 3 14 16 −0.15 0.42
GeSe 4 4 14 16 −0.12 −0.05
GeSi 4 3 14 14 1.39
GeTe 4 5 14 16 −0.15
IBa 5 6 17 2 −2.52
IBr 5 4 17 17 0.05
ICl 5 3 17 17 0.39
IGa 5 4 17 13 0.26
I2 5 5 17 17 −0.87 −0.87
IIn 5 5 17 13 −0.63
IK 5 4 17 1 −0.32
INa 5 3 17 1 0.85
InBr 5 4 13 17 −0.26 −0.11
InCl 5 3 13 17 −0.14 0.36
InF 5 2 13 17 0.05 −0.02
InI 5 5 13 17 −0.63
InS 5 3 13 16 2.45
InSe 5 4 13 16 0.09
InTe 5 5 13 16 0.59
IRb 5 5 17 1 0.27
KBr 4 4 1 17 −0.18 −0.17
KCl 4 3 1 17 −0.15 0.3
KI 4 5 1 17 −0.32
LiBr 2 4 1 17 −0.28
LiCl 2 3 1 17 0.56
MgCl 3 3 2 17 2.77
NaBr 3 4 1 17 0.76 −0.25
NaCl 3 3 1 17 0.72 −1.97
NaI 3 5 1 17 0.85
Na2 3 3 1 1 0.23 0.23
NC 2 2 15 14 1.78
NF 2 2 15 17 0.9
N2 2 2 15 15 −5.26 −5.26
NO 2 2 15 16 0.26 3.21
NP 2 3 15 15 −1.29
NS 2 3 15 16 3.12
OAl 2 3 16 13 1.65
OB 2 2 16 13 −0.87
OBe 2 2 16 2 2.57
OBr 2 4 16 17 −0.25 0.65
OC 2 2 16 14 −7.4 −8.75
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Table 7
(Continued.)

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

OCl 2 3 16 17 −0.87
OF 2 2 16 17 0.64
OGe 2 4 16 14 0.19
ON 2 2 16 15 3.21 0.26
O2 2 2 16 16 −1.51 −1.51
OP 2 3 16 15 1.32
OS 2 3 16 16 −1.82
OSi 2 3 16 14 1.35 −5.1
OSn 2 5 16 14 −0.37
PAl 3 3 15 13 1.54 1.78
PB 3 2 15 13 1.84
PbS 6 3 14 16 −0.07
PbSe 6 4 14 16 −0.12 −1.34
PbTe 6 5 14 16 0.72
PC 3 2 15 14 −0.64 1.44
PN 3 2 15 15 −1.29
PO 3 2 15 16 1.32
P2 3 3 15 15 −1.79 −1.79
PS 3 3 15 16 0.8 1.71
PSe 3 4 15 16 0.08
PSi 3 3 15 14 −0.23 2.17
RbBr 5 4 1 17 0.28 −0.2
RbCl 5 3 1 17 0.32 0.3
RbF 5 2 1 17 0.22
RbI 5 5 1 17 0.27
SAl 3 3 16 13 0.99 −0.36
SB 3 2 16 13 1.01 −0.86 −2.96
SBi 3 6 16 15 −0.07
SbTe 5 5 15 16 0.77
SC 3 2 16 14 2.35 −3.91
SeAl 4 3 16 13 −0.23
SeBi 4 6 16 15 −0.03
SeGe 4 4 16 14 −0.05 −0.12
SeIn 4 5 16 13 0.09
SeP 4 3 16 15 0.08
SePb 4 6 16 14 −0.12 −1.34
SeSi 4 3 16 14 −0.22 −0.32 −4.15
SeSn 4 5 16 14 0.06 −0.34
SGe 3 4 16 14 0.42 −0.15
SiAl 3 3 14 13 −0.93
SiC 3 2 14 14 1.66
SiF 3 2 14 17 −0.47
SiGe 3 4 14 14 1.39
SIn 3 5 16 13 2.45
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Table 7
(Continued.)

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

SiO 3 2 14 16 1.35 −5.1
SiP 3 3 14 15 2.17 −0.23
SiS 3 3 14 16 0.19 1.06 −4.46
SiSe 3 4 14 16 −0.32 −0.22 −4.15
Si2 3 3 14 14 1.3 1.3 −0.35 −0.35
SiTe 3 5 14 16 −3.55
SN 3 2 16 15 3.12
SnF 5 2 14 17 −1.2
SnO 5 2 14 16 −0.37
SnS 5 3 14 16 −0.38 0.15
SnSe 5 4 14 16 −0.34 0.06
SnTe 5 5 14 16 −0.59 −2.39
SO 3 2 16 16 −1.82
SP 3 3 16 15 0.8 1.71
SPb 3 6 16 14 −0.07
SrBr 5 4 2 17 0.25 1.07
SrCl 5 3 2 17 0.32 0.67 0.42
SrF 5 2 2 17 0.37 −0.91
SrS 5 3 2 16 0.86
SSi 3 3 16 14 1.06 0.19 −4.46
SSn 3 5 16 14 0.15 −0.38
SSr 3 5 16 2 0.86
TeGa 5 4 16 13 −0.54
TeGe 5 4 16 14 −0.15
TeIn 5 5 16 13 0.59
TePb 5 6 16 14 0.72
TeSb 5 5 16 15 0.77
TeSi 5 3 16 14 −3.55
TeSn 5 5 16 14 −0.59 −2.39
TlBr 6 4 13 17 −0.26 −0.5
TlCl 6 3 13 17 0.35
TlF 6 2 13 17 0.51

Count 99 99 60 60
Average 0.166465 0.166465−0.60033 −0.55117
σ 0.661182 0.661182 2.457001 2.503583

4.2. Dissociation energies

The difficulty just described is removed for diatomicD◦◦. All four sides of the mesh
containing molecules with a givenR1 andR2 have known data (figure 5): ifC1 or C2

are 0 or 8 (18 in the IUPAC scheme) then the molecules contain an inert-gas atom and
D◦◦ is essentially zero. These boundary conditions would, of course, produce the trivial
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Table 8
Second-nearest-neighbor second differences of dissociation potential in eV,

sorted alphabetically by molecules.

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

AlO 3 2 16 13 −0.448
AlP 3 3 15 13 0.5675
AsF 4 2 17 15 0.0325
AsGa 4 4 13 15 0.335
BBr 2 4 17 13 −0.438
BF 2 2 17 13 −1.553
BO 2 2 16 13 −1.643
BrB 4 2 13 17 −0.438
BrGa 4 4 13 17 −0.173
BrK 4 4 1 17 0.17
BrN 4 2 15 17 0.31
CaS 4 3 16 2 0.31
ClGa 3 4 13 17 −0.13
ClK 3 4 1 17 0.185
ClTl 3 6 13 17 0.005
CN 2 2 15 14 −1.313
CO 2 2 16 14 −3.115
CS 2 3 16 14 −1.39
FAs 2 4 15 17 0.0325
FB 2 2 13 17 −1.553
FGa 2 4 13 17 0.105 −0.673
FGe 2 4 14 17 −0.183
FK 2 4 1 17 0.23
FN 2 2 15 17 0.6025
GaAs 4 4 15 13 0.335
GaBr 4 4 17 13 −0.173
GaCl 4 3 17 13 −0.13
GaF 4 2 17 13 0.105 −0.673
GeF 4 2 17 14 −0.183
GeO 4 2 16 14 0.34
GeS 4 3 16 14 −0.123
GeSe 4 4 16 14 −0.225
IK 5 4 1 17 0.12
InSb 5 5 15 13 0.34
KBr 4 4 17 1 0.17
KC1 4 3 17 1 0.185
KF 4 2 17 1 0.23
KI 4 5 17 1 0.12
NBr 2 4 17 15 0.31
NC 2 2 14 15 −1.313
NF 2 2 17 15 0.6025
NO 2 2 16 15 −0.623
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Table 8
(Continued.)

Molecules, coordinates Second differences
along coordinates

R1 R2 C1 C2 R1 R2 C1 C2

OAl 2 3 13 16 −0.448
OB 2 2 13 16 −1.643
OC 2 2 14 16 −3.115
OGe 2 4 14 16 0.34
ON 2 2 15 16 −0.623
OP 2 3 15 16 −1.07
PAl 3 3 13 15 0.5675
PO 3 2 16 15 −1.07
SbIn 5 5 13 15 0.34
SC 3 2 14 16 −1.39
SCa 3 4 2 16 0.31
SeGe 4 4 14 16 −0.225
SGe 3 4 14 16 −0.123
TlCl 6 3 17 13 0.005

Count 12 12 17 17
Average 0.052 0.052 −0.592 −0.592
σ 0.206 0.206 0.996 0.996

Figure 5. Row-2 diatomic molecules are plotted in the spaceC1, C2. Dissociation potentials (in eV) are
shown for molecules containing inert-gas atoms, for those onne= 10, and for those in the triangular region

at the lower right. Inside that region, values obtained by iterative interpolation are shown in italic.
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result everywhere in the mesh, so a high-value boundary must be found. This high-value
boundary is the line along which lie molecules with 10 valence electrons(ne = 10); the
data for molecules on it are known (forR1 = R2 = 2 as seen in figure 5); and that the
cohort of molecules on it and going in the directions of increasing group numbers toC1

orC2 = 7 are those of more interest in much of chemistry.
The results of iterative interpolation for these molecules are seen in the figure.

Nearest-neighbor triads were used, because only one prediction (O2) would be possible
with second-nearest-neighbor triads. The average difference between the tabulated val-
ues and the interpolated data is 1.4%(σ = 14.7%) [21]. This result is much better than
any achieved by the selection of graphically-based starting equations for least-squares
analysis.

The predictions just described utilize only two of the four dimensions of the pe-
riodic system of diatomic molecules. What about an iterative averaging along all four
coordinates? The process has been carried out in four dimensions to findD◦◦ for main-
group molecules within the same triangular area shown in figure 4 but having both atoms
from row 3 (Na to Cl) [22]. Nearest-neighbor triads were used. Utilizing 101 tabulated
values and, where tabulated data were lacking, 25 neural-network forecasts [8], it was
possible to predict six values forD◦◦ of R1 = R2 = 3 molecules (SiCl, PS, PCl, S2, SCl,
and Cl2). The average of the differences between the predictions and tabulated values
(where they exist, i.e., for PS, Cl2 and S2) is−8.35%(σ = 14.8%). The accuracy is not
as good as for the two-dimensional case, but serves to illustrate the method.

5. Discussion

It is concluded thatre satisfies the Laplace equation sufficiently well to make rea-
sonably good individual predictions when there are sufficient neighboring molecules
with tabulated data.D◦◦ obeys Laplace’s equation but with larger random errors; in spite
of these errors, the results of iterative interpolation are useful for first-approximation
forecasts. The triad principle (in the form of Laplace’s equation), thus, rejoins the in-
dices of mathematical chemistry, the correlations of QSPR, and least-squares and neural
network analyses as tools for mining molecular data while results from precise experi-
ment and computation are awaited.

Computer experiments done in the course of this work demonstrated that Poisson’s
equation (formed by adding to the second differences a term with the central molecule’s
datum multiplied by a constantc) do not smooth the data well. This equation would have
been equivalent to Schrödinger’s time-independent equation (with the constantc being
2mV/h̄2 andV being a constant “chemical-space potential”). Additional experiments
with V as avariableshowed that it fluctuates with short wavelength and with no physical
meaning. How ironic it would have been if either of these computer experiments had
succeeded!
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